Chemistry – 4311 December 11, 2012

Final Exam

Key

(20) 1. Matching (use a letter only once)

a.
$$H = U - PV$$

In the van der Waals equation $[P + a(n/V)^2][V - nb] = nRT$ b. 3RT/2the $a(n/V)^2$ term corrects for ______.

Average E_{trans} of a mole of ideal gas molecules is b

The enthalpy H is defined as __m .

Work for a reversible, isothermal expansion is \.

If the only work is P-V work, the heat for heating a substance at constant V is ______.

At constant T and n, the pressure is d to the volume.

For a constant pressure process, work is

According to the first law of thermodynamics the change in the internal energy ΔU equals $\underline{\hspace{1cm}}$.

If F(s) is the distribution of speeds for an ideal gas, the average speed is found from _ c.

$$c = 3.00 \times 10^8 \text{ m/s}$$

$$c = 3.00 \times 10^8 \text{ m/s}$$
 $F = 96,500 \text{ C/mole}$

$$h = 6.626 \times 10^{-34} \text{ J}$$

$$h = 6.626 \times 10^{-34} \text{ J s}$$
 (R 298 K)/F = 0.0257 V

$$k_B = 1.381 \times 10^{-23} \text{ J/K}$$

R= 1.987 cal/mol-K

R = 0.08206 L-atm/mol-K

$$N_A = 6.02 \times 10^{23}$$

$$1 \text{ atm} = 101.325 \text{ kPa} = 760 \text{ torr}$$

c. volume of molecules

d. inversely proportional

$$e. \int C_V dT/T \\$$

f.
$$7 \times 10^{-4}$$

$$g. <_{S}> = sF(s)$$

h.
$$-nRTln(V_2/V_1)$$

$$i. <_{S} > = \int_{S} F(s) ds$$

$$j. q + w$$

k.
$$(P_2 - P_1)\Delta V$$

1. proportional

$$m. H = U + PV$$

o. molecular attractions

p.
$$-\Delta V/P_{ex}$$

$$q. -P_{ex}\Delta V$$

s.
$$Mv^2/2$$

(10) 2. The reaction for combustion of naphthalene at 25 °C is

$$C_{10}H_8(s) + 12O_2(g) \rightarrow 10CO_2(g) + 4H_2O(1)$$

The heats of formation are:

 $C_{10}H_8(s)$, 73.65 kJ/mol; $CO_2(g)$, - 393.51 kJ/mol, $H_2O(l)$, - 285.83 kJ/mol.

Calculate the enthalpy change ΔH^{o} for this reaction.

$$\Delta H_{r}^{\circ} = 4 \times (-285.83) + 10(-393.51) - 73.65$$

= -5152.07 JeJ

- (10) 2. One mole of an ideal gas at 300 K and a pressure of 15.0 atm expands isothermally and reversibly to a final pressure of 1.00 atm.
- (a) Calculate the final volume V_2 .

(b) Calculate w in L-atm.

culate w in L-atm.

$$P_1 V_1 = P_2 V_2$$
 $W = -nRT \ln V_2/V_2$
 $= -0.08206 \times 300 \times \ln 5/2$
 $= -66.6 \text{ L-atm}$

(15) 4. At 1 atm pressure and 298 K a certain gas has a density of 1.23 g/L. What is the molar mass of the gas?

$$PV = NRT = \frac{W}{M}RT$$
 $PM = \frac{W}{V}RT = \frac{1.239}{L} \times 0.08206 \times 298 = 30.089$