Chemistry-4311 September 6, 2013

Qı	ıiz	#1

Name_____Ke >

1. Matching (Use a letter only once)

At constant n and P, the volume of an ideal gas is _____ to temperature.

The equation for the average speed of an ideal gas is found from ______.

 $4.3 \times 10^4 \times 0.000020$ equals _____.

According to the kinetic theory of gases, the average translational energy for a mole of N_2 molecules is _____.

translational energy for a mole of N_2 molecules is

The ideal gas law equation is

a. $\langle c \rangle = \int cP(c)dc$

b. $mv^2/2$

c. 0.86

d. PV = nRT

e. proportional

f. 3RT/2

g. < c > = cP(c)

h. PT = nRV

i. inversely proportional

j. 8.6×10^9

2. From the kinetic theory of gases PV for a mole of a pure gas equals $M < v^2 > /3$, where M is the molecular weight and $< v^2 >$ is the average of the squared velocities of the gas molecules. Show that the root-mean-squared velocity, $< v^2 >^{1/2}$, is $(3RT/M)^{1/2}$.

$$PV = M \langle V^2 \rangle / 3 = RT$$

$$\langle V^2 \rangle = \frac{3RT}{M} \implies \langle V^2 \rangle^{1/2} = \left(\frac{3RT}{M}\right)^{1/2}$$

3. A pure gas at 1 atm pressure and 25 $^{\circ}$ C has a density of 1.8 g/L. What is the molecular weight of the gas?