Chemistry-4311 October 4, 2013

O	uiz	#4
V		11-

	1	
Name	VEX	

 $R = 8.314 \text{ J/mol-K} = 0.08206 \text{ L-atm/mol-K} = 1.987 \text{ cal/mol-K}, N_A = 6.02 \text{ x } 10^{23}$

Matching (Use a letter only once)

An increase in entropy corresponds to an (a) _____ in disorder.

The differential change in entropy dS is defined as ______.

The Gibbs energy is defined as _____.

The entropy change for boiling water is given by _____.

For a spontaneous process at constant T,P and only P,V work, ΔG is + than zero.

- a. dq_{rev}/T
- **b.** greater
- c. $\int C_P dT/T$
- **d.** $C_p dT$
- e. increase
- f. less
- g. G = U TS
- **h.** $\Delta S = \Delta H_{\text{vap}}/T$
- i. decrease
- j. G = H TS

2. One mole of an ideal gas at 25 °C is expanded from 1 L to 10 L.

(a) Calculate q_{rev} for this process in J or kJ.

$$\Delta u = g + \omega$$

$$\Delta u = 0$$

$$g = -\omega$$

(b) Calculate ΔS for this process in J/K.

3. The entropy of mixing of two gases is $\Delta S_{mix} = -R(n_A lnx_A + n_B lnx_B)$. Calculate ΔS_{mix} for mixing 3 moles of A with 5 moles of B. Give your answer in J/K.

