Chemistry-4311 September 12, 2014

0	uiz	113
	1117	# /
	W.L.	II desi

Name_ Key

 $R = 8.314 \text{ J/mol-K} = 0.08206 \text{ L-atm/mol-K} = 1.987 \text{ cal/mol-K}, N_A = 6.02 \text{ x } 10^{23}$

1. Matching (Use a letter only once)

The number of collisions a molecule undergoes per unit time is called the ______.

The rate of effusion for CO_2 is than that for H_2 .

The first law of thermodynamics says the _____ of the universe is constant.

The work associated with the expansion/compression of a gas at constant pressure is _____.

- a. faster
- **b.** $q = \int CdT$
- c. mean free path
- **d.** $w = -nRTln(V_2/V_1)$
- e. energy
- f. heat
- g. collision frequency
- **h.** q = JdT/C
- i. slower
- **j.** $W = -P_{ex}\Delta V$

2. Calculate the work in joules when one mole on an ideal gas is compressed isothermally at

(2) 25 °C from 2.0 atm and 2.0 L to 4.0 atm and 1.0 L.

3. a. Show that for a constant volume process, with only P-V work, that $\Delta U = q$.

b. The internal energy U for an ideal gas is 3RT/2. Calculate q in joules for heating an ideal gas at constant volume from 25 °C to 100 °C. I should have said one mole!!

2
$$q_V = \Delta U = 3/2 R(T_2 - T_1) = 3/2 \times 8.314 \times (00^{\circ}C - 25^{\circ}C)$$

= $3/2 \times 8.314 \times 75$ T
= 935 T